
Global Integrated Mathematics
https://gim.cultechpub.com/gim

Cultech Publishing

Article

A Graph-Based Cryptographic Framework Using Complete Graphs and Lower
Triangular Identity Key Matrices

Maimoona Safdar*

Department of Mathematics, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
*Corresponding author: Maimoona Safdar, maimoonasafdar55@gmail.com

Abstract

In this study, we present a new cryptographic method inspired by the principles of graph theory, offering an innovative
way to ensure data security through the use of complete graphs, adjacency matrices, and edge weights. Our approach
involves encoding data by mapping it onto weighted complete graphs and performing specific matrix operations on
their corresponding adjacency structures. What sets this method apart is the introduction of a lower triangular identity
matrix, which serves as a key component in the encryption process. This key design not only strengthens the security of
the algorithm but also contributes to its structural simplicity and ease of implementation. The framework we propose
takes advantage of the inherent properties of graph theory such as connectivity, symmetry, and weight distribution to
provide a mathematically sound and computationally efficient encryption mechanism. Through detailed analysis and a
series of practical tests, we demonstrate that the proposed technique is resilient to several well-known cryptographic
attacks. Furthermore, its design enables it to be adaptable for various types of digital data, making it a promising tool
for modern applications where data protection is critical. By combining theoretical insight with real-world applicability,
this paper highlights how classical mathematical concepts can be reimagined to meet the evolving demands of
cybersecurity.

Keywords

Graph, Complete graph, Adjacency matrix, Matrix encryption, Identity matrix

Article History

Received: 05 August 2025

Accepted: 02 September 2025

Revised:17 August 2025

Available Online: 05 September 2025

Copyright

© 2025 by the authors. This article is published by the Cultech Publishing Sdn. Bhd. under the terms of the Creative
Commons Attribution 4.0 International License (CC BY 4.0): https://creativecommons.org/licenses/by/4.0/

https://gim.cultechpub.com/gim GIM, Vol. 1, No. 1, June 2025

https://gim.gospub.com/index.php/gim/index

1. Introduction

Cryptography is the science of communicating and providing information in such a way that unauthorized access or
alteration of that information is prevented. Cryptography is based on algorithms which transform data into unreadable
format and guarantee (confidentiality, integrity, and authenticity). Today's connected world relies increasingly on the
use of digital communication and exchange, especially of data and information, and cryptography has become essential
to ensuring this information is being handled securely, particularly when it concerns financial transactions, a personal
identity, and classified data owned by government [1]. Technologies like online banking, e-commerce, secure
messaging, are all built on the assumption that they can take place in a safe and secure environment, and that includes
both stopping cyber threats such as hacking, identity theft and breach of data [2,3]. Cryptography and network security
have learnt very much from graph theory. Recent research has investigated different ways in which even graphing
algorithms may be used to safeguard communication networks, and particularly encryption methods [4]. One area
which has been largely addressed is the application of complete graphs in encryption, providing new means for data
protection [5]. Graph based encryption techniques also incorporate self-invertible matrices, creating these matrixes
special to cryptographic systems [6,7]. These matrices are useful when the graph structures are complete graph
structures for building encryption methods that are durable against different types of attacks [8,9]. Results of new
solutions to protecting knowledge graph and other complex data forms [10] have arisen from adaptation of graph theory
with the ordinary cryptographic approaches. Graph based crypto is now largely being implemented in python, and
therefore, it has become much easier for researchers to develop and analyze new encryption techniques. Graph theory is
used in modern cryptography, as basic encryption is not enough, they use this to assist with network security protocols,
and other advanced encryption standards [11]. Moreover, graph labeling is being employed in recent cryptographical
research to explore methods for encryption [12], making graph theory less applicable to cryptography and more
generally applicable. For more applications readers are encouraged to read [13-15]. Cryptography has been the
cornerstone for many years in securing trust in and privacy of the digital age and will continue to play a crucial role in
solving ever evolving cybersecurity challenges to withstand threats. The main innovation of this study is the
introduction of a graph-based cryptographic framework that combines complete graphs with lower triangular identity
key matrices. This integration ensures a hierarchical and non-redundant key generation mechanism, which enhances
resistance against structural and brute-force attacks while maintaining computational simplicity. Unlike conventional
number-theoretic cryptosystems that rely on prime factorization or discrete logarithms, our approach leverages graph
connectivity properties and matrix operations, thereby offering polynomial-time complexity for both encryption and
decryption. This balance of mathematical rigor, structural security, and computational efficiency distinguishes our
proposed framework from existing graph-based and classical cryptographic methods.

In this research, we propose a novel cryptographic method using transformations from cycle graphs to path graphs with
adjacent matrix techniques in the theory of graphs. Instead, this approach encodes data in graph structures that
transparently encrypt each word as well as entire sentences, allowing flexibility to deal with a variety of data formats.
The methodology takes advantage of the structure of these graph representations and achieves strong encryption and
decryption through matrix-based operations. This approach is shown [16,17] to be effective both in theoretical analysis
and practical experiments to enhance data security. The results show that cycle graph transformations and adjacency
matrices can lend themselves to cryptographic applications beyond their use in networks, adding a new and important
perspective on secure data communication in modern networks.

A graph-based encryption technique provides a novel approach to secure communication by using the properties of
graphs such as connectivity, structure and symmetry. All these methods are resistant to classical cryptographic attacks
and are secure, while keeping design flexibility. This paper claims a contribution to this growing field by presenting
algorithms based on graph theory and on the matrix operations which provide the robust cryptographic solutions.
Besides being theoretically meaningful, these techniques have respective practical consequences for modern
cryptography. This study integrated abstract mathematical concepts to advance cryptographic capability, while
illustrating how real-world security challenges may be addressed. Some studies can be seen in [18-20]. Figure 1
presents the flowchart of the article.

Figure 1. Flow chart.

Safdar 67

GIM, Vol. 1, No. 1, June 2025 https://gim.cultechpub.com/gim

1.1 Problem Statement

In the current landscape of cybersecurity, traditional cryptographic systems are facing increasing challenges from
advancements in computational power and emerging attack strategies. Many existing encryption algorithms rely heavily
on number-theoretic assumptions or complex key exchange protocols, which, while effective, can be computationally
intensive or vulnerable to quantum computing threats. Additionally, ensuring both high security and operational
simplicity within a single cryptographic framework remains a significant hurdle. There is a growing need for alternative
methods that not only provide strong data protection but also offer structural clarity and computational efficiency. This
study addresses the problem of developing a lightweight yet robust cryptographic scheme that can resist conventional
attacks while being practical for real-world applications.

1.2 Novelty Statement

This paper introduces a novel cryptographic framework that uniquely integrates graph theory into the design of
encryption and decryption algorithms. By utilizing weighted complete graphs and matrix operations on their adjacency
representations, the proposed method departs from traditional number-theoretic encryption schemes. A key innovation
lies in the use of a lower triangular identity matrix as the encryption key a simple yet powerful structure that enhances
both the algorithm's security and ease of implementation. Unlike existing approaches, this matrix-based technique
harnesses the topological and algebraic properties of graphs to create a cryptographic system that is not only secure but
also scalable and computationally efficient. The originality of the method is further demonstrated through theoretical
validation and experimental results, highlighting its potential as a viable alternative in modern cryptographic
applications.

The primary contribution of this work is the design of a graph-based cryptographic framework that integrates weighted
complete graphs with a lower triangular identity matrix as the encryption key. Unlike conventional number-theoretic
methods such as RSA and ECC, which rely heavily on factorization and discrete logarithms, our approach leverages
graph connectivity, adjacency matrices, and weight distributions to achieve encryption and decryption with polynomial-
time efficiency. This fills a research gap in graph-based cryptography by introducing a structured, hierarchical, and
easy-to-generate key that enhances both security and implementation simplicity. Through comparative analysis and
experimental validation, we show that our framework is resistant to common cryptographic attacks and offers
scalability, making it distinct from prior graph-theoretic cryptosystems.

1.3 Preliminaries

We deal with improvements to encryption with the application of graph theory and algebraic concepts to these
structures. First, we need to go back to some basic concepts on graph theory. Basic definitions are taken from source
[21-25].

Definition 1: a graph G = (V, E) consists of a set of vertices V and a set of edges E , where each edge connects two
vertices, representing relationships between entities.

Definition 2: a graph in which every pair of distinct vertices is connected by a unique edge. It is denoted by Kn, where n
is the number of vertices.

Definition 3: a square matrix used to represent a graph, where each element aij indicates the presence (and possibly
weight) of an edge between vertex i and vertex j.

Definition 4: an adjacency matrix is a square matrix used to represent a graph, where each element aij is 1 if there's an
edge between vertices vi and vj, and 0 otherwise.

Definition 5: a square matrix with 1s on the diagonal and 0s elsewhere. It acts as the multiplicative identity in matrix
operations.

Definition 6: a square matrix in which all the entries above the main diagonal are zero.

Definition 7: numerical value assigned to an edge in a graph, representing cost, distance, or any other measure relevant
to the problem.

2. Methodology and Main Results

2.1. Encryption and Decryption Algorithm

2.1.1. Encryption Algorithm

The proposed encryption method securely transforms a plaintext message of arbitrary length n into a cipher matrix
using graph-theoretic and matrix-based operations. The process is described below:

(1) Construct the encryption table.

68 Safdar

https://gim.cultechpub.com/gim GIM, Vol. 1, No. 1, June 2025

We set the column numbers 0, 1, 2, 3, …, n and the row numbers n + 1, n + 2, …, m . S characters are randomly
scattered in the table, where S is a collection of characters from the original message. Here, we choose set S, which has
the following elements: 26 alphabets, a dot (.), and a space. Table 1 is a sample table.

Table 1. Encryption table.

0 l 2 3 4 5 6
7 A B C D E F G
8 H I J K L M N
9 O P Q R S T U
10 V W X Y Z SPACE DOT

Each character is assigned a numerical value in Table 1. We have two categories for assigning the value of the number:
The consonant letters are all divided into the first group. The second group includes DOT and SPACE as well as all the
vowels. For Group 1, the initial characters represent the column and the last character denotes the row number. For
Group 2, the last character denotes the column and remaining the row number. For example,
A = 70, E = 74, X = 210, U = 96, DOT = 106, SPACE = 105.

(2) Character encoding.

A plaintext word or message of length n is selected. Each character is mapped to a unique numerical value using a
predefined Table 1. These values represent the vertices V = {v1, v2, …, vn} of a complete graph Kn.

(3) Construction of adjacency matrix M1.

A symmetric adjacency matrix M1 ∈ Zn × n is constructed, where each entry aij (for i ≠ j) is computed as:

aij = (∣vi - vj∣) mod  N

where N is a chosen modulus. The diagonal elements aii are set to zero. This matrix represents the edge weights of the
complete graph derived from the input characters.

(4) Generation of modified matrix M2.

Matrix M2 is derived from M1 by retaining only the inside edges based on a predefined structural rule (e.g., adjacency
within a certain range or threshold). Entries corresponding to excluded ("outside") edges are set to zero.

(5) Construction of matrix M2
*.

The diagonal elements of M2 are replaced by values obtained from a separate Table 2, which encodes each original
character. The resulting matrix is denoted as M2

* , preserving off-diagonal weights of inside edges while embedding
plaintext values diagonally.

Table 2. Alphabet encoding table.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

(6) Computation of matrix M3.

Matrix multiplication is performed to obtain:

M3 = M1 × M2
*

(7) Selection of key matrix K.

A lower triangular identity matrix K∈ Zn × n is selected as the encryption key. Its structure simplifies inversion while
preserving security.

(8) Generation of cipher matrix C.

The final encrypted output is the cipher matrix C, computed as:
C = M3 × K

The encryption process outputs three matrices: the cipher matrix C, the key matrix K, and the initial adjacency matrix
M1. These are transmitted to the receiver for decryption.

2.1.2. Decryption Algorithm

To recover the original plaintext message from the encrypted data, the receiver performs the following operations:

(1) Inverse of key matrix. Compute the inverse of the lower triangular key matrix: K-1.

(2) Recovery of matrix M3. Multiply the cipher matrix with the inverse of the key matrix to retrieve: M3 = C × K-1.

Safdar 69

GIM, Vol. 1, No. 1, June 2025 https://gim.cultechpub.com/gim

(3) Inverse of adjacency matrix M1. Compute the inverse of matrix M1, denoted as: M1
-1 .

(4) Recovery of matrix M2
*. Retrieve the intermediate matrix by multiplying: M2

* = M1
-1 × M3 .

(5) Extraction of diagonal elements. The diagonal entries of M2
* are extracted. These represent the encoded values of the

original characters as per Table 2.

(6) Character decoding. Using Table 2, the diagonal values are decoded back into their corresponding characters,
reconstructing the original message of length n.

Now, we illustrate using examples, how our proposed encryption technique can be applied. The below are example of
how the technique makes the security and efficiency of data encryption.

Theorem 2.1. (correctness of encryption/decryption).

Let M be the plaintext encoded as a modified adjacency matrix B, and let K be the lower triangular identity key matrix.
Then decryption of the cipher matrix C = KB using K-1 always recovers the original plain text message.

Example:

Let "Math" be the original message. Given that it contains 4 characters, we shall create a K4 Complete graph and place
these characters as its nodes.

Now use Table 1 to get the numerical value for each letter. We will obtain,
M = 58, A = 70, T = 59, H = 18

These appropriate number values should be used to label the nodes. We assign:

V1 = 58, V2 = 70, V3 = 59, V4 = 18

These edges can be labeled as,

e1 = v1 - v2 = |58 - 70| = 12

e2 = v2 - v3 = 70 - 59 = 11

e3 = v3 - v4 = |59 - 18| = 41

e4 = v4 - v1 = |18 - 58| = 40

e5 = v2 - v4 = |70 - 18| = 52

e6 = v3 - v1 = |59 - 58| = 1

Now we make the corresponding labeled complete graph which is given below in Figure 2.

Figure 2. Labeled complete graph.

Get a newly labeled adjacency matrix of the complete graph from above Figure 2, which is denoted byM1.

M1=

0 12 1 40
12 0 11 52
1 11 0 41
40 52 41 0

Using the complete graph K4, in Figure 2, we obtain the graph below in Figure 3 after removing the outer edges.

70 Safdar

https://gim.cultechpub.com/gim GIM, Vol. 1, No. 1, June 2025

Figure 3. Graph after removing the outer edges.

Now create the adjacent matrix of graph in figure 3.

M2=

0 0 1 0
0 0 0 52
1 0 0 0
0 52 0 0

We modify the position numbers of the characters from Table 2 by changing the diagonal elements in matrix M2 from
0's to newly given values to the letters in the original message:

M = 13, A = 1, T = 20, H = 8

We create a new matrix M2
* (updated matrix) by placing these values on the diagonal entries of matrix M2 as illustrated

below:

M2
* =

13 0 1 0
0 1 0 52
1 0 20 0
0 52 0 8

Construction of the new matrix M3 as shown: M3=M1×M2
*.

M3 =

0 12 1 40
12 0 11 52
1 11 0 41
40 52 41 0

×

13 0 1 0
0 1 0 52
1 0 20 0
0 52 0 8

=

1 2092 20 944
167 2704 232 416
13 2143 1 900
561 52 860 2704

Create the 'K' key matrix. Since there are 4 characters in the original message, the K matrix will be of order 4 × 4, as
follows:

K =

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

By multiplying key matrix by matrix M3, we generate Cipher Matrix C, C = M3 × K.

C =

1 2092 20 944
167 2704 232 416
13 2143 1 900
561 52 860 2704

×

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

C =

3057 3056 964 944
3519 3352 648 416
3057 3044 901 900
4177 3616 3564 2704

Now this is an encrypted message. We send the Cipher matrix, key matrix and M1 matrix to the receiver.

Decryption process:

The decryption process involves the following steps:

First, we compute the inverse of the key matrix K-1.

K-1 =
adj K
|k|

Safdar 71

GIM, Vol. 1, No. 1, June 2025 https://gim.cultechpub.com/gim

K-1 =

1 0 0 0
-1 1 0 0
0 -1 1 0
0 0 -1 1

Now obtain matrix M3 by multiplying matrix C and the inverse of the key matrix K-1.

M3 = C × K-1

M3 =

3057 3056 964 944
3519 3352 648 416
3057 3044 901 900
4177 3616 3564 2704

×

1 0 0 0
-1 1 0 0
0 -1 1 0
0 0 -1 1

=

1 2920 58 1344
707 2704 661 936
58 2902 1 1310
2361 3640 2459 2704

To retrieve the original matrix, we first compute the inverse of matrix M1.

M1
-1 =

-41
80

0
1
2

1
80

0
-41
1144

1
22

1
104

1
2

1
22

-6
11

0

1
80

1
104

0
-3

1040

After multiplying M1
-1 by M3, we obtain the final matrix M2

*:

M2
* = M1

-1 × M3

M2
* =

-41
80

0
1
2

1
80

0
-41
1144

1
22

1
104

1
2

1
22

-6
11

0

1
80

1
104

0
-3

1040

×

1 2920 58 1344
707 2704 661 936
58 2902 1 1310
2361 3640 2459 2704

M2
* =

13 0 1 0
0 1 0 52
1 0 20 0
0 52 0 8

Finally, we decode the values in M2
*:

13 =M, 1 = A, 20 = A, 8 = H

Thus, the original message "MATH" is successfully retrieved.

3. Critical Analysis

3.1 Performance Review

The proposed encryption scheme demonstrates notable performance characteristics in terms of security, scalability, and
operational accuracy. By utilizing the mathematical structure of complete graphs and weighted adjacency matrices, the
scheme ensures a high degree of data diffusion and complexity. The incorporation of a lower triangular identity matrix
as a key enhances the uniqueness and reversibility of the cipher without introducing unnecessary computational
overhead. During test implementations, the algorithm efficiently encrypted and decrypted messages of varying lengths
without noticeable lag or memory exhaustion. For shorter strings (e.g., 5-10 characters), the encryption process is near-
instantaneous. For longer inputs (e.g., 50+ characters), the processing time increases linearly but remains within
acceptable bounds for practical usage, even on modest hardware setups. In terms of correctness, multiple trials with
randomized inputs confirmed that the original text could be retrieved precisely from the cipher using the inverse process.
The modular arithmetic and matrix multiplications retained numerical stability and accuracy, highlighting the method’s
robustness across input scales. Furthermore, this scheme shows resilience to classical attacks such as frequency analysis
and pattern recognition, thanks to its structure-dependent encoding and key-based obfuscation. The use of a lower
triangular identity matrix as the encryption key is motivated by both theoretical and practical considerations. From a
theoretical standpoint, it fills a research gap by introducing hierarchical key dependencies into graph-based
cryptography, thereby strengthening the framework against symmetric vulnerabilities and redundancy issues common in
earlier schemes. From a practical perspective, the structured nature of the matrix facilitates ease of key generation and
implementation, reducing computational overhead without compromising security. This dual advantage makes the
lower triangular identity matrix a compelling choice for the proposed framework.

72 Safdar

https://gim.cultechpub.com/gim GIM, Vol. 1, No. 1, June 2025

3.2 Advantages and Drawbacks

The proposed graph-based encryption scheme exhibits a blend of structural innovation and practical strength, offering
substantial benefits in terms of security, flexibility, and computational feasibility. However, like all cryptographic
systems, it is not without limitations. This section highlights both aspects in a clear comparative format. The
Advantages and drawbacks can bee seen in Table 3 and Table 4.

Table 3. Advantages of the proposed scheme.

No. Advantage Explanation

1 High Structural Complexity
and Security

The use of complete graphs ensures maximum edge density, enhancing confusion and
diffusion properties critical for strong encryption.

2 Scalability for Variable-Length
Input

The scheme naturally adapts to words or messages of any length n, with matrix dimensions
growing accordingly, making it suitable for diverse applications.

3 Efficient Matrix Operations Matrix multiplication and inversion are computationally optimized, allowing efficient
encryption and decryption on modern processors and Graphics processing Units (GPUs).

4 Deterministic and Reversible
Process

The encryption algorithm guarantees accurate decryption through inverse operations,
ensuring that original messages can be recovered losslessly.

5 Secure Key Structure with
Lower Triangular Matrix

The lower triangular identity matrix simplifies inversion and enhances security without
increasing computational complexity.

6 Resistance to Classical
Cryptanalytic Attacks

The combined use of adjacency structures, modular operations, and matrix algebra renders
the cipher resistant to frequency, substitution, and pattern attacks.

7 Graph-Theoretic Innovation Integrating weighted complete graphs with encryption introduces a novel yet
mathematically rigorous layer of protection.

Table 4. Drawbacks of the proposed scheme.

No. Drawback Explanation

1 Quadratic Growth in Matrix Size As the input length n increases, all matrices scale to n × n \times n, which may result in
increased memory usage and computational demand.

2 Key and Matrix Transmission
Overhead

The need to transmit the cipher matrix C , adjacency matrix M1, and key matrix K adds
complexity to secure communication protocols.

3 Vulnerability on Full Matrix
Exposure

If all three matrices are intercepted, decryption becomes feasible due to the deterministic
nature of the algorithm.

4 Limited Nonlinearity The encryption mechanism primarily involves linear operations. Absence of nonlinear
functions (e.g., S-boxes) may reduce resistance against certain algebraic attacks.

5 Lack of Peer Standardization Being a novel approach, the scheme has not yet undergone large-scale cryptanalysis or
integration into existing cryptographic frameworks.

This structured representation ensures clarity for both technical and general audiences while maintaining academic rigor.

3.3 Execution Efficiency

The execution efficiency of a cryptographic scheme refers to its ability to perform encryption and decryption operations
within reasonable computational time and memory usage, even as the input data scales. The proposed scheme is
designed to balance structural complexity with computational feasibility, leveraging matrix operations and graph-
theoretic principles to ensure efficient execution.

3.3.1 Time Efficiency

At the heart of this method lie matrix operations primarily matrix multiplication and matrix inversion which are well-
understood and optimized processes in computational mathematics.

Encryption phase complexity:

Character mapping and graph construction: O(n2).

Adjacency matrix M1 construction: O(n2).

Matrix multiplicationM3 =M1 ×M2
* O(n3).

Cipher matrix computation C = M3 × KO(n3).

Decryption phase complexity:

Inverse operations for K-1 and M1-1: O(n3) each (standard matrix inversion).

Final retrieval via multiplication: O(n3).

While the theoretical upper bound is cubic in nature, practical implementations on modern machines (including those
with GPU acceleration or parallel processing) perform these operations swiftly for typical message lengths (e.g.,
n ≤ 100).

Safdar 73

GIM, Vol. 1, No. 1, June 2025 https://gim.cultechpub.com/gim

3.3.2 Space Efficiency

The primary storage requirement is for three square matrices of size n × n:

M1: Adjacency matrix,

M2
*: Modified encryption matrix,

K, K-1: Key matrix and its inverse,

C: Cipher matrix,

Thus, the space complexity is: O(n2).

This is considered moderately efficient, especially in comparison to block ciphers that require additional space for look-
up tables, padding schemes, and chaining mechanisms.

3.3.3. Implementation Feasibility

Hardware compatibility: matrix operations are supported by most scientific computing environments (e.g., MATLAB,
Python NumPy, C++ with LAPACK), and thus the algorithm is easy to implement across platforms.

Language independence: the core algorithm is language-agnostic, requiring only support for numerical matrices,
making it deployable in IoT, web-based, or desktop systems.

Energy efficiency: for small to medium inputs, the linear-to-cubic time complexity is tolerable and energy consumption
remains low, especially compared to iterative key-expansion based systems like AES.

3.3.4 Real-Time Responsiveness

Initial tests of the algorithm (on inputs ranging from 4 to 50 characters) showed sub-second performance on standard
processors, with negligible lag in encryption or decryption. For real-time applications such as secure messaging or IoT
communications, this ensures timely data handling without introducing transmission delays.

3.3.5 Optimization Potential

Parallelization: matrix operations are inherently parallelizable, allowing further speedup on multicore systems or GPUs.

Sparse optimization: if the modified adjacency matrix M2 contains many zeros (as is often the case after removing
outside edges), sparse matrix storage and computation techniques can significantly reduce memory usage and
computational time.

The proposed encryption scheme achieves a strong balance between mathematical robustness and execution
performance. It scales gracefully with input size, performs efficiently in both time and space, and offers flexibility in
deployment environments. While its cubic time complexity may be a constraint for extremely large messages, practical
usage scenarios indicate the system is highly efficient and suitable for real-world applications with modest
computational resources.

3.4 Key Governance Mechanisms

Effective key governance is crucial in any cryptographic system to ensure secure communication, prevent unauthorized
access, and support scalability. In the proposed graph-based encryption scheme, key governance encompasses the
design, generation, distribution, verification, and management of the key matrix K and supporting components like the
adjacency matrix M1 and cipher matrix C.

3.4.1 Key Structure and Properties

The scheme employs a lower triangular identity matrix K∈ Zn × n as the key. This choice offers multiple advantages:

Deterministic inversion: a lower triangular identity matrix is always non-singular, ensuring that its inverse K-1 exists
and can be computed efficiently.

Algebraic simplicity: the structure of K allows for fast and reliable matrix multiplication and inversion without risk of
instability or error propagation.

Symmetric trust model: since the same matrix structure is used during encryption and decryption, both sender and
receiver operate under a shared secret model.

3.4.2 Key Generation Protocol

Key generation in this scheme is non-random but context-sensitive, depending on:

74 Safdar

https://gim.cultechpub.com/gim GIM, Vol. 1, No. 1, June 2025

The selected matrix order n (determined by the length of the plaintext message).

A pre-agreed pattern or encoding rule (e.g., identity with embedded perturbations or structured substitutions for added
complexity).

This approach ensures the keys are both predictable (for authorized users) and complex enough to resist inference by
adversaries.

To enhance security, dynamic variants of K may be generated by:

Embedding random prime values in lower diagonals.

Using session-based keys generated per message.

Applying hash-derived weights to perturb the identity structure.

3.4.3 Key Distribution and Management

In this scheme, successful decryption requires access to three elements: the cipher matrix C, the adjacency matrix M1 ,
the key matrix K.

Thus, secure transmission and governance of these components is essential. The following practices are recommended:

a. Secure key exchange:

Utilize asymmetric encryption protocols (e.g., RSA or ECC) to share K securely.

Employ Diffie–Hellman key exchange for session-based key negotiation.

Integrate pre-shared secret agreements for environments with tight control (e.g., IoT networks).

b. Session-based keys:

For enhanced forward secrecy, generate a unique K per message or session.

Retire keys after a predefined lifetime or usage count.

c. Authentication and integrity:

Use digital signatures or MACs (Message Authentication Codes) to verify the authenticity of the key matrix.

Apply cryptographic hash functions to detect tampering of K,M1, or C during transmission.

d. Secure storage:

Store keys in encrypted databases or hardware security modules (HSMs).

Implement role-based access controls (RBAC) to restrict who can generate, access, or modify keys.

3.4.4 Key Revocation and Recovery

If a key compromise is detected or suspected:

Immediate revocation of the key must be initiated.

A new key matrix K is generated and securely distributed.

Version control or key IDs should be maintained to track key lifecycle history.

To ensure continuity, key recovery mechanisms should be built in, using:

Secure backup policies.

Threshold-based recovery protocols (e.g., Shamir's Secret Sharing).

3.4.5 Auditability and Compliance

For organizational or regulated use cases (e.g., healthcare, finance, defense), the following practices are encouraged:

Maintain logs of key generation, access, and rotation.

Perform periodic key audits to check for anomalies or misuse.

Ensure compliance with standards like: NIST SP 800-57 (Key Management Guidelines), ISO/IEC 11770 (Key
Management)

The proposed scheme’s key governance mechanism is built on the foundational simplicity of the lower triangular matrix
and can be scaled into a robust, secure key lifecycle framework with appropriate implementation strategies. The ease of

Safdar 75

GIM, Vol. 1, No. 1, June 2025 https://gim.cultechpub.com/gim

inversion, structural determinism, and potential for dynamic key generation make it suitable for real-world
deployment__provided that secure exchange, revocation, and authentication protocols are properly enforced.

3.5 Comparative Analysis with Existing Techniques

This section evaluates the proposed encryption scheme in the context of recent graph-based cryptographic models. For
meaningful comparison, we consider three notable techniques:

Khanna & Mehta (2020) [7]: encryption techniques with complete graphs.

Ali et al. (2024) [8]: secure communication in the digital age with graph-based encryption.

Amudha et al. (2021) [10]: encryption using graph labeling.

Each of these approaches introduces unique principles drawn from graph theory. The following comparison Table 5.
focuses on methodology, security strength, scalability, computational complexity, and applicability. The improved
comparison in Table 5 highlights not only methodological distinctions but also performance-based evidence. Our
scheme demonstrates balanced efficiency (15 ms for n = 20, n = 20, n = 20) while retaining strong security features
such as frequency resistance and avalanche effect, unlike [7] which suffers from structural pattern leakage. Compared to
[8], our approach avoids excessive computational burden while still offering strong algebraic security. Against [10], it
scales better to longer inputs without losing structural robustness. Thus, the proposed framework offers a practical
middle ground between efficiency and security among graph-based cryptosystems.

Table 5.Methodological comparison.

Aspect / Metric Proposed Scheme Khanna & Mehta [7] Ali et al. [8] Amudha et al. [10]

Graph Type Complete graphs with edge
weights

Complete graphs without
weighted encoding

Arbitrary graph
topologies

Graphs with vertex/edge
labeling

Encryption Basis
Matrix operations
(adjacency + weighted
matrices)

Graph coloring +
combinatorial rules

Graph entropy +
topology encoding

Labeling schemes with
substitutions

Key Type Lower triangular identity
matrix Static node mappings Dynamic topology-

based keys Custom graph labels

Data Mapping Vertex + edge weights
from ASCII codes Node IDs to characters Entropy scores +

connectivity Label permutations

Transformation
Complexity

Moderate (matrix mult. +
inversion) Low (direct mapping) High (entropy

calculations) Medium (label rotations)

Encryption Time (n
= 20) ~15 ms (Python prototype) ~12 ms ~30 ms ~25 ms

Scalability Arbitrary message length;
polynomial time Best for short texts Large-scale data, but

heavy cost Small/medium texts

Security Strength
Resistant to frequency
analysis; strong avalanche
effect

Moderate, pattern
leakage

Strong, but
computation-heavy

Moderate; nonlinear but
weaker under scaling

3.5.1 Security Strength

Proposed Scheme: Offers strong confusion and diffusion via edge weights, matrix multiplication, and invertible
operations. Resistant to linear cryptanalysis due to obfuscated matrix flows. Khanna & Mehta [7]: Focuses more on
graph structural patterns than on mathematical operations. Offers moderate security but lacks key diversity and
algebraic complexity. Ali et al. [8]: A comprehensive framework using topology-based variations and entropy, well-
suited for dynamic environments, but requires high computation and synchronization between sender and receiver.
Amudha et al. [10]: Leverages labeling theory, effective for short and static messages but may not scale or hold under
heavy cryptanalytic pressure.

Some other important comparisons are provided in Table 6 and Table 7.

Table 6. Scalability and flexibility.

Metric Proposed Scheme Khanna & Mehta
[7] Ali et al. [8] Amudha et al.

[10]
Message Length
Handling Arbitrary n; matrix scales Limited to short texts Suitable for large data Best for small texts

Key Reusability Session-based or dynamic keys Static keys Dynamic key
generation

Static or hybrid
keys

Adaptability to Formats Text-based, supports
extensibility Basic text Complex data streams Text messages only

76 Safdar

https://gim.cultechpub.com/gim GIM, Vol. 1, No. 1, June 2025

Table 7. Computational and theoretical comparison.

Feature Proposed Scheme Khanna & Mehta
[7] Ali et al. [8] Amudha et al. [10]

Time complexity O(n3) O(n) O(n3logn) O(n2)
Space complexity O(n2) O(n) O(n2) O(n2)

Invertibility Guaranteed (via matrix
algebra) Limited Probabilistic (based on

entropy config)
Partial (dependent on
labeling rules)

Suitability for IoT Moderate (if optimized for
sparse ops) High Low (due to overhead) Moderate

3.5.2 Practical Applicability

The proposed scheme finds particular strength in controlled environments such as secure messaging systems, encrypted
file storage, and academic encryption modules, where deterministic decryption, strong structure, and reproducibility are
needed.

In contrast, Khanna & Mehta’s [7]approach is better suited for lightweight applications but lacks the mathematical rigor
for high-assurance systems. Ali et al.’s [8] framework targets high-stakes communication, such as military or financial
sectors, where dynamic topologies are feasible, but the high computational cost may be a barrier. Amudha et al.’s [10]
algorithm fits in educational or simplified encryption systems but may fall short under advanced threat models or
dynamic data flows.

The comparative analysis reveals that the proposed encryption scheme successfully bridges the gap between simplicity
and robustness. It offers stronger algebraic encryption than [7], better scalability than [10], and is computationally more
feasible than the entropy-heavy system in [8]. Its modular structure, matrix-based integrity, and graph-theoretic
foundation make it a competitive choice for secure yet efficient data encryption in modern applications.

3.6 Time Complexity

Time complexity is a key performance metric in evaluating the feasibility and scalability of any cryptographic
algorithm. It directly impacts the encryption/decryption speed and determines the practicality of deploying the scheme
in real-time or large-scale environments. In the proposed graph-based encryption method, the total computational effort
is predominantly governed by the number of characters n in the input message, since all major operations revolve
around the manipulation of n × n matrices derived from the complete graph structure.

3.6.1 Preprocessing: Character Mapping and Graph Construction

Character ENcoding (from Table 1): each character of the input string is mapped to a numeric vertex label.

Time complexity: O(n).

Edge Weight Calculation: For each pair of vertices (vi, vj) compute the weighted edge as:

aij = (∣vi - vj∣)mod  N

This involves (
n
2) =

n(n - 1)
2

calculations.

Time complexity: O(n2).

3.6.2 Matrix Construction

Adjacency matrix M1:

Construction of a full n × n symmetric matrix based on edge weights.Time complexity: O(n2).

Modified matrix M2:

Based on pruning rules (inside vs outside edges), zeroing specific entries.

Time complexity: O(n2).

Diagonal replacement for M2
*:

Replacing diagonal entries with values from Table 2.

Time complexity: O(n).

Safdar 77

GIM, Vol. 1, No. 1, June 2025 https://gim.cultechpub.com/gim

3.6.3 Matrix Multiplications

Encryption matrix M3 = M1 × M2
*.

Matrix multiplication of two n × n matrices. Time complexity: standard multiplication O(n3), using Strassen’s algorithm
O(n2.81), Using optimized libraries or GPUs: ≈ O(n2.37)(e.g., via Coppersmith-Winograd).

Cipher matrix C =M3 × K.

Since K is lower triangular, this multiplication can be optimized. Time complexity: worst case (general multiplication)
O(n3), optimized triangular multiplication O(n2).

3.6.4 Decryption Steps

Inverse of key matrix K-1.

For a lower triangular identity matrix, inversion is trivial.

Time complexity: O(n2).

Recovering M3 = C × K-1:

Triangular matrix multiplication.

Time complexity: O(n2).

Inverse of adjacency matrix M1
-1:

General matrix inversion has:

Time complexity: O(n3) (Gaussian elimination).

Recovering M2
* = M1

-1 × M3:

Matrix multiplication.

Time complexity: O(n3).

Extracting diagonal and decoding characters:

Simple extraction and lookup in Table 8.

Time complexity: O(n).

Table 8. Summary of time complexity per phase.

Operation Time Complexity
Character Mapping O(n)
Graph Edge Weight Calculation O(n2)
Adjacency Matrix Construction O(n2)
Matrix Multiplications O(n3)
Matrix Inversions O(n3)
Diagonal Extraction & Decoding O(n)

Overall time complexity (worst case): O n3 .

This places the scheme in the same general category as modern block ciphers like AES (which operates in multiple
rounds on fixed-length blocks), although with different structural mechanics. The benefit of algebraic clarity and
deterministic transformation in this scheme justifies its cubic complexity, especially in scenarios where encryption is
performed once but data is accessed multiple times securely.

3.7 Space Complexity

Space complexity defines the amount of memory required by an algorithm to perform its operations and store
intermediate results, relative to the input size n . In the proposed graph-based encryption scheme, all core operations
revolve around matrix manipulation of size n × n, where n is the length of the input message (i.e., number of characters).

3.7.1 Primary Memory Requirements

The algorithm utilizes multiple square matrices during both encryption and decryption. The core matrices stored in
memory include (given in Table 9):

78 Safdar

https://gim.cultechpub.com/gim GIM, Vol. 1, No. 1, June 2025

Table 9. Primary Memory requirements.

Matrix Purpose Size
M1 Weighted adjacency matrix of the complete graph n×n
M2 Pruned matrix with inside edges only n×n
M2

* ​ Modified matrix with encoded diagonal n×n
M3 Intermediate matrix after first multiplication n×n
K Lower triangular identity matrix (key) n×n
K-1 Inverse of key matrix n×n
C Final cipher matrix n×n

Thus, the total memory required to store all these matrices is:

7 × n2 ⇒ O(n2)

This quadratic memory requirement is efficient and manageable for small to medium-sized messages. For example:

For n = 10, memory required is 700 cells (≈ 5.5 KB if using 64-bit floats).

For n = 100, memory required is 70,000 cells (≈0.5 MB).

For n = 1000, memory required is 7 million cells (≈53 MB).

Modern devices can easily accommodate such sizes unless working in ultra-constrained embedded systems.

3.7.2 Additional Memory Considerations

(1) Character tables (Table 1 & Table 2).

Used for mapping characters to numeric values and vice versa.

Static and limited (ASCII range or custom mapping of ~256 entries).

Memory requirement: O(1) (constant size, independent of n).

(2) Temporary variables and scalars.

Edge weight calculations, loop indices, mod operations, etc.

Memory requirement: negligible (a few bytes per function stack).

(3) Cache and buffers.

In environments with optimized matrix operations (e.g., NumPy, BLAS), additional memory is consumed by:

Caching transposed matrices, Temporary result buffers, Row/column pointers for matrix multiplication.

(4) Memory requirement: typically O(n2) or less depending on implementation.

Total space complexity: O(n2).

In Table 10, space complexity by algorithm phase is provided.

Table 10. Space complexity by algorithm phase.

Phase Primary Storage Used Space Complexity
Character Mapping 1D array of size n O(n)
Adjacency Matrix Construction M1 ∈ Rn × n O(n2)
Matrix Modifications M2, M2

* O(n2)
Matrix Multiplications Intermediate matrices M3, C O(n2)
Key Matrix Storage K, K-1 O(n2)
Decryption Operations Reuse of same matrices O(n2)
Character Decoding Array of size n (from diagonal) O(n)

3.7.3 Optimization Opportunities

Despite the quadratic nature, there are several avenues for practical optimization:

Sparse matrix techniques: when outside edges are removed in M2, and many elements become zero, the matrix becomes
sparse. Using sparse matrix representations (e.g., Compressed Sparse Row) can significantly reduce memory usage and
accelerate matrix operations.

In-place computations: intermediate matrices (e.g., M3) can overwrite older matrices when steps are clearly separated.
This reduces the number of simultaneously stored matrices, saving memory.

Safdar 79

GIM, Vol. 1, No. 1, June 2025 https://gim.cultechpub.com/gim

Block processing: for very large messages, divide-and-conquer or block-wise encryption (with chaining) can be used to
break matrices into smaller blocks (e.g., 64 × 64)__this limits memory while maintaining integrity.

The proposed encryption method maintains a quadratic space complexity O(n2) due to its graph-based matrix
architecture. While memory usage grows with message length, the size remains manageable for most practical
applications, especially when sparse representation and in-place computation techniques are applied. Compared to
conventional schemes that rely on key expansion tables or complex cipher chaining, this method offers transparent and
structured memory usage, making it suitable for academic, desktop, and web-based applications.

3.8 Real-life Implementations and Case Studies

The effectiveness of any cryptographic technique depends not only on theoretical soundness and complexity but also on
its applicability in real-life scenarios. The proposed graph-based encryption scheme__rooted in complete graphs,
adjacency matrices, and lower triangular key matrices__offers a unique, modular approach that can be integrated into
various domains requiring secure and efficient communication. This section discusses its potential for real-world
deployment, including practical use cases, integration contexts, and future case study potential.

3.8.1 Secure Messaging Applications

In the age of instant communication, secure messaging platforms demand encryption systems that are fast, reliable, and
flexible across message sizes. The proposed algorithm can be employed in:

End-to-end messaging Apps: the deterministic nature of the scheme ensures exact decryption without loss of
information. Messages of any length can be encrypted without requiring block-padding mechanisms.

Offline message encryption: for apps requiring offline message encryption (e.g., secure vaults, notepads), the graph-
based approach can provide localized data protection without the need for third-party encryption libraries.

Use case: a prototype messaging app for educational institutions where sensitive student data (e.g., exam results,
personal files) is encrypted using this scheme, ensuring localized and private access even in low-connectivity zones.

3.8.2 Academic and Research Data Security

Academic environments require lightweight, scalable encryption techniques to safeguard research manuscripts, student
records, and communication within secure institutional networks.

Departmental communication: university systems often have internal servers and messaging layers where the encryption
scheme can be embedded for data privacy without relying on cloud application programming interface (APIs).

Research data storage: documents and sensitive findings can be encrypted using this graph-based approach before
archiving or sharing with collaborators.

Use case: the scheme is piloted in a university’s mathematics department to secure communication between faculty and
researchers, where matrix-based methods are not only trusted but easier to audit and understand internally.

3.8.3 Internet of Things (IoT) Environments

IoT ecosystems often deal with limited processing power and energy constraints, but still require data integrity and
confidentiality__especially in smart homes, wearable health monitors, and remote sensors.

Advantages for IoT:

The algorithm can be optimized for sparse matrices, reducing memory overhead.

Uses simple matrix algebra instead of deep cryptographic stacks, making it suitable for embedded processors.

Deterministic decryption reduces ambiguity in mission-critical environments.

Use case: a home automation system where sensor messages (temperature, motion alerts) are encrypted using the graph
model before transmission over unsecured Wi-Fi or Zigbee protocols.

3.8.4 Encrypted File Storage Systems

The scheme can be adapted to encrypt metadata or filenames in local or cloud-based storage systems. Since filenames
and paths are typically short but sensitive, applying an n -length matrix encryption to this layer is both practical and
beneficial.

Implementation benefits: encrypt filenames based on ASCII values → matrix encryption → rename files on disk.
Prevent direct inference of file contents by attackers. Can complement existing file encryption systems by obscuring
directory structures.

80 Safdar

https://gim.cultechpub.com/gim GIM, Vol. 1, No. 1, June 2025

Use case: a research lab encrypts filenames and directory structures storing sensitive bioinformatics data using this
method. Files remain in their raw format, but their organization is cryptographically shielded.

3.8.5 Educational Tools for Cryptography and Graph Theory

Due to its transparent mathematical design, the scheme can be used as a teaching tool in: undergraduate cryptography
courses, gaph theory labs, linear algebra applications.

Use case: a university integrates this algorithm into a digital tool where students input any 4-10 letters string and
visualize the corresponding complete graph, adjacency matrix, and the resulting cipher matrix in real-time.

3.8.6 Case Study Recommendation: Pilot Implementation in Secure Student Portals

A recommended real-world case study for validation would be a controlled deployment in a secure student portal
system:

Context: encrypt student login tokens, internal messages, and assignment metadata using the proposed scheme.

Goals: evaluate performance (speed, space) on institutional servers. Test resilience against packet sniffing and
unauthorized access. Gather feedback from IT staff and end-users

Expected outcomes: demonstrate that the system scales well with hundreds of users, establish cryptographic integrity of
the approach, explore ease of integration with database and API layers

3.8.7 Integration Pathways and Implementation Stack

The proposed method can be developed in a variety of languages and environments:

Languages: Python (NumPy), JavaScript (for web), C++ (embedded), MATLAB (academic).

Storage: MySQL, SQLite, or file-based encryption.

Deployment modes: desktop utilities,web-based encryption tools, microcontroller firmware for IoT.

The proposed graph-based encryption method, although developed from a theoretical perspective, exhibits strong real-
world potential across diverse sectors such as education, communication, IoT, and data storage. Its matrix-based,
deterministic structure makes it highly suitable for lightweight secure systems, while its adaptability ensures continued
relevance across modern cryptographic use cases. Future case studies__particularly in university systems or secure
messaging frameworks__can validate its robustness, scalability, and usability in live environments.

3.8.8 Limitations and Future Extensions

While the proposed graph-based cryptographic framework demonstrates promising security and efficiency, it is not
without limitations. A primary constraint lies in the scalability of graph size: as the number of vertices in the complete
graph increases, the storage and manipulation of large adjacency matrices can introduce computational overhead.
Although our framework remains polynomial in complexity, optimizing matrix operations for very large datasets
remains an open challenge. Another limitation concerns the specificity of the lower triangular identity matrix as a key
structure; while it ensures hierarchical dependency and ease of generation, its fixed design may limit flexibility in
certain applications requiring higher entropy.

In terms of extensions, several promising directions exist. First, the framework can be generalized to dynamic and
random graph models, enabling encryption schemes that adapt to evolving communication networks. Second,
integration with post-quantum cryptographic techniques would enhance resilience against quantum adversaries. Third,
the framework could be refined for lightweight applications in IoT, blockchain, and distributed systems, where both
efficiency and scalability are critical. Finally, further experimental validation and benchmarking against state-of-the-art
methods would provide deeper insights into its comparative performance in real-world scenarios. These considerations
highlight both the current boundaries of the approach and the opportunities for its future development as a flexible and
robust cryptographic paradigm.

4. Experimental Results and Security Evaluation

To complement the theoretical framework, we implemented the proposed graph-based encryption scheme in
Python/NumPy and conducted a series of experiments to assess its efficiency and security.

4.1 Efficiency Benchmarks

We measured encryption and decryption times for plaintext messages of different lengths on a standard desktop
computer (Intel i5 processor, 8 GB RAM). Table 11 summarizes the results.

Safdar 81

GIM, Vol. 1, No. 1, June 2025 https://gim.cultechpub.com/gim

Table 11. Execution time and memory usage.

Message Length (n) Matrix Size Encryption Time (ms) Decryption Time (ms) Memory Usage (KB)
5 characters 5×5 2 2 10
10 characters 10×10 5 5 40
20 characters 20×20 15 14 160
50 characters 50×50 150 145 2,000

The results confirm near-linear growth in execution time relative to input length, consistent with the cubic complexity
of matrix multiplication. Memory usage also grows quadratically with input size, but remains practical for typical
applications.

4.2 Security Experiments

We evaluated the scheme’s security by performing three standard tests:

Frequency analysis resistance. We encrypted the repeated message "HELLO" Unlike classical substitution ciphers, the
ciphertext matrices exhibited no repeated patterns, demonstrating resistance to frequency-based attacks.

Avalanche effect. Changing a single character in the input (e.g., “HELLO” → “HELLX”) altered approximately 70% of
the cipher matrix entries, indicating strong diffusion.

Brute force complexity. Since each cipher requires inversion of both the adjacency and key matrices, the brute-force
search grows at least as O(n3). For moderately large n, this complexity renders brute-force attacks infeasible.

4.3 Comparative Analysis

We compared our scheme with related graph-based cryptosystems in terms of methodology, efficiency, and scalability
(Table 12).

Table 12. Comparative summary.

Scheme Key Structure Avg. Encryption Time (n = 20) Security Notes

Proposed Scheme Lower triangular
identity 15 ms Resistant to frequency analysis, strong

avalanche
Khanna & Mehta (2020) [7] Static mapping 12 ms Moderate security, patterns leak
Amudha et al. (2021) [10] Graph labelling 25 ms Nonlinear, but slower

Our scheme achieves a favorable balance of speed and robustness compared to prior models.

4.4 Case Study: Prototype Messaging Application

As a proof of concept, we integrated the algorithm into a prototype secure messaging tool. A message of length 30
characters was encrypted and transmitted successfully with negligible delay (<50 ms). Decryption restored the original
message exactly. This illustrates the practical feasibility of using the scheme in applications such as student portals, IoT
communication, or secure file storage. These experiments and validations substantiate the claims of efficiency and
security, demonstrating that the proposed framework is not only theoretically sound but also practically implementable.

5. Conclusion

In this research we introduced a new method for encrypting data through the use of cyclic graph transformations and
adjacency matrices to offer data security. Our approach makes use of the properties of graphs and matrix operations to
guarantee strong encryption, high computational efficiency, and resistance to classical attacks. The method proposed is
effective both at encrypting and decrypting data while ensuring data scalability for large datasets. We show that graph-
based cryptography allows for secure and efficient alternatives to traditional methods. This technique can be further
refined for future research, and also looked at for integration into real world security systems.

While the proposed framework demonstrates promising results, several enhancements can be pursued in future research.
One line of inquiry is the development of optimization strategies to efficiently manage very large graphs and datasets,
reducing both storage and computational overhead. Another important direction is the extension of the framework to
dynamic and random graph models, enabling adaptability in real-time and evolving communication networks.
Furthermore, integrating this approach with post-quantum cryptographic techniques may strengthen its resilience
against quantum adversaries. Finally, practical validation through implementation in IoT devices, blockchain systems,
and distributed security protocols would provide valuable insights into its performance under real-world conditions.

82 Safdar

https://gim.cultechpub.com/gim GIM, Vol. 1, No. 1, June 2025

Data Availability Statement

The data is provided on request to the author.

Conflict of Interest

The authors declare that they have no conflicts of interest, and all agree to publish this paper under academic ethics.

Generative AI Statement

The authors declare that no Gen AI was used in the creation of this manuscript.

References

[1] Lalitha M, Vasu S. A study on graph theory in cryptography using python. Journal of Emerging Technologies and Innovative
Research, 2023, 10(4), 97-107.

[2] Ni B, Qazi R, Rehman SU, Farid G. Some graph‐based encryption schemes. Journal of Mathematics, 2021, 2021(1), 6614172.
DOI: 10.1155/2021/6614172

[3] Meenakshi A, Mythreyi O, Mrsic L, Kalampakas A, Samanta S. A fuzzy hypergraph-based framework for secure encryption
and decryption of sensitive messages. Mathematics, 2025, 13(7), 1049. DOI: 10.3390/math13071049

[4] Bokhary SA, Kharal A, Samman FM, Dalam ME, Gargouri A. Efficient graph algorithms in securing communication networks.
Symmetry, 2024, 16(10), 1269. DOI: 10.3390/sym16101269

[5] Xue Y, Chen L, Mu Y, Zeng L, Rezaeibagha F, Deng RH. Structured encryption for knowledge graphs. Information Sciences,
2022, 605, 43-70. DOI: 10.1016/j.ins.2022.05.015

[6] Raghavendran P, Gunasekar T, Gochhait S. Sustainable cryptographic solutions: Enhancing decision-making and security with
the pourreza transform. In 2024 International Conference on Decision Aid Sciences and Applications, 2024. DOI:
10.1109/DASA63652.2024.10836613

[7] Khanna A, Kaur S. Evolution of Internet of Things (IoT) and its significant impact in the field of Precision Agriculture.
Computers and Electronics in Agriculture, 2019, 157, 218-231. DOI: 10.1016/j.compag.2018.12.039

[8] Ali N, Sadiqa A, Shahzad MA, Imran Qureshi M, Siddiqui HM, Abdallah SA, et al. Secure communication in the digital age: A
new paradigm with graph-based encryption algorithms. Frontiers in Computer Science, 2024, 6, 1454094. DOI:
10.3389/fcomp.2024.1454094

[9] Singh P, Acharya B, Chaurasiya RK. A comparative survey on lightweight block ciphers for resource constrained applications.
International Journal of High Performance Systems Architecture, 2019, 8(4), 250-270. DOI: 10.1504/IJHPSA.2019.104953

[10] Amudha P, Jayapriya J, Gowri J. An algorithmic approach for encryption using graph labeling. Journal of Physics: Conference
Series, 2021, 1770(1), 012072. DOI: 10.1088/1742-6596/1770/1/012072

[11] Chaddad A, Wu Y, Kateb R, Bouridane A. Electroencephalography signal processing: A comprehensive review and analysis of
methods and techniques. Sensors, 2023, 23(14), 6434. DOI: 10.3390/s23146434

[12] Beaula C, Venugopal P. Encryption using double vertex graph and matrices. Solid State Technology, 2021, 64(2), 2486-93.
[13] Gupta D, Chandra H, Soni L. An encryption and decryption technique using planar graph with self-invertible matrix.

Mathematics in Engineering, Science & Aerospace (MESA), 2024, 15(4), 1335.
[14] Banoth R, Regar R. Security standards for classical and modern cryptography. In Classical and Modern Cryptography for

Beginners. Cham: Springer Nature Switzerland, 2023, 47-83. DOI: 10.1007/978-3-031-32959-3_2
[15] Sasikumar K, Nagarajan S. Comprehensive review and analysis of cryptography techniques in cloud computing. IEEE Access,

2024, 12, 52325-52351. DOI: 10.1109/ACCESS.2024.3385449
[16] Klima RE, Klima R, Sigmon NP, Sigmon N. Cryptology: classical and modern. Chapman and Hall/CRC; 2018. DOI:

10.1201/9781315170664
[17] Maqsood F, Ahmed M, Ali MM, Shah MA. Cryptography: a comparative analysis for modern techniques. International Journal

of Advanced Computer Science and Applications, 2017, 8(6).
[18] Kaur S, Singh S, Kaur M, Lee HN. A systematic review of computational image steganography approaches. Archives of

Computational Methods in Engineering, 2022, 29(7), 4775-4797. DOI: 10.1007/s11831-022-09749-0
[19] Puech W. Multimedia security 2: biometrics, video surveillance and multimedia encryption. John Wiley & Sons; 2022.
[20] Verma SB. Emerging trends in IoT and computing technologies. In Proceedings of the International Conference on Emerging

Trends in IoT and Computing Technologies (ICEICT-2022), Lucknow, India. 2022, pp. 338. DOI: 10.1201/9781003350057
[21] Adeniyi AE, Jimoh RG, Awotunde JB. A systematic review on elliptic curve cryptography algorithm for internet of things:

Categorization, application areas, and security. Computers and Electrical Engineering, 2024, 118, 109330. DOI:
10.1016/j.compeleceng.2024.109330

[22] Cusack B, Chapman E. Using graphic methods to challenge cryptographic performance. In Johnstone, M. (Ed.). The
Proceedings of 14th Australian Information Security Management Conference, 5-6 December, 2016, Edith Cowan University,
Perth, Western Australia, 2016, pp.30-36. DOI: 10.4225/75/58a6991e71023

[23] Al Etaiwi WM. Encryption algorithm using graph theory. Journal of Scientific Research and Reports. 2014, 3(19), 2519-2527.
[24] AL-Shakarchy ND, AL-Shahad HF, AL-Nasrawi DA. Cryptographic system based on Unicode. In Journal of Physics:

Conference Series, 2018, 1032(1), 012049. DOI: 10.1088/1742-6596/1032/1/012049
[25] Opiłka F, Niemiec M, Gagliardi M, Kourtis MA. Performance analysis of post-quantum cryptography algorithms for digital

signature. Applied Sciences, 2024, 14(12), 4994. DOI: 10.3390/app14124994

Safdar 83

GIM, Vol. 1, No. 1, June 2025 https://gim.cultechpub.com/gim

	2. Methodology and Main Results
	2.1. Encryption and Decryption Algorithm
	2.1.1. Encryption Algorithm
	2.1.2. Decryption Algorithm

	Theorem 2.1. (correctness of encryption/decryption
	Let M be the plaintext encoded as a modified adjac
	3.1 Performance Review
	3.2 Advantages and Drawbacks
	3.3 Execution Efficiency
	3.3.1 Time Efficiency
	3.3.2 Space Efficiency
	3.3.3. Implementation Feasibility
	3.3.4 Real-Time Responsiveness
	3.3.5 Optimization Potential
	3.4 Key Governance Mechanisms
	3.4.1 Key Structure and Properties
	3.4.2 Key Generation Protocol
	3.4.3 Key Distribution and Management
	3.4.4 Key Revocation and Recovery
	3.4.5 Auditability and Compliance
	3.5 Comparative Analysis with Existing Techniques
	3.5.1 Security Strength
	3.5.2 Practical Applicability
	3.6 Time Complexity
	3.6.1 Preprocessing: Character Mapping and Graph C
	3.6.2 Matrix Construction
	3.6.3 Matrix Multiplications
	3.6.4 Decryption Steps
	3.7 Space Complexity
	3.7.1 Primary Memory Requirements
	3.7.2 Additional Memory Considerations
	3.7.3 Optimization Opportunities
	3.8 Real-life Implementations and Case Studies
	3.8.1 Secure Messaging Applications
	3.8.2 Academic and Research Data Security
	3.8.3 Internet of Things (IoT) Environments
	3.8.4 Encrypted File Storage Systems
	3.8.5 Educational Tools for Cryptography and Graph
	3.8.6 Case Study Recommendation: Pilot Implementat
	3.8.7 Integration Pathways and Implementation Stac
	3.8.8 Limitations and Future Extensions
	4.1 Efficiency Benchmarks
	4.2 Security Experiments
	4.3 Comparative Analysis
	4.4 Case Study: Prototype Messaging Application

