On Certain Initial Techniques to Model Singular Functions

Authors

  • Symon Serbenyuk Department of Scientific Activity Organization & Department of Combating Cybercrime, Kharkiv National University of Internal Affairs, Kharkiv, Ukraine Author

DOI:

https://doi.org/10.64229/1gamwr79

Keywords:

Singular functions, Systems of functional equations, Compositions of functions, Expansions of real numbers, Probability distributions

Abstract

Nowadays many researches are devoted to pathological mathematical objects of real analysis such as the Moran and Cantor-like fractal sets, functions with complicated local structure, as well as their generalizations and various applications. For example, these applications include the development of fractal multiformalism, general fractal measures and dimensions, as well as Hewitt-Stromberg measures and homogeneous Moran measures, physical and economical modeling, etc. According to historical way of investigations in mathematics, it is important the question on the methodological tools used by classical mathematicians to advance the study of pathological functions. The present survey is devoted to examples and the main techniques for modeling mainly singular functions introduced before 2000 in papers indexed in Scopus. Since the later research in this topic must more explanations, the rest examples will be considered in next papers of the author. The main considered techniques to construct singular functions are following: using systems of functional equations; applying Markov chains and distribution function; using various expansions of arguments and values of a function; certain geometrical iteration procedures; using auxiliary relations for the geometric construction of the graph of a function; applications of auxiliary maps, compositions of functions, and iterated function systems.

 

References

[1]Zamfirescu T. Most monotone functions are singular. The American Mathematical Monthly, 1981, 88(1), 47-49. DOI: 10.1080/00029890.1981.11995183

[2]Takayasu H. Physical models of fractal functions. Japan Journal of Applied Mathematics, 1984, 1(1), 201-205. DOI: 10.1007/BF03167868

[3]de Amo E, Díaz Carrillo M, Fernàndez-Sànchez J. Singular functions with applications to fractal dimensions and generalized takagi functions. Acta applicandae mathematicae, 2012, 119(1), 129-148. DOI: 10.1007/s10440-011-9665-z

[4]Bunde A. Havlin S. Fractals in Science. 2013.

[5]Falconer K. Techniques in Fractal Geometry, John Willey and Sons, Ltd.. Chichester, 1997.

[6]Falconer K. Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons, 2013.

[7]Serbenyuk S. A certain modification of classical singular function. Boletín de la Sociedad Matemática Mexicana, 2023, 29(3), 88. DOI: 10.1007/s40590-023-00569-1

[8]Serbenyuk S. Functional equations, alternating expansions, and generalizations of the Salem functions. Aequationes Mathematicae, 2024, 98(5), 1211-1223. DOI: 10.1007/s00010-023-00992-9

[9]Achour R, Li Z, Selmi B, Wang T. A multifractal formalism for new general fractal measures. Chaos, Solitons &Fractals, 2024, 181, 114655. DOI: 10.1016/j.chaos.2024.114655

[10]Attia N. Hausdorff and packing dimensions of Mandelbrot measur. International Journal of Mathematics, 2020, 31 (9), 2050068. DOI: 10.1142/S0129167X20500688

[11]Attia N. On the multifractal analysis of covering number on the Galton Watson tree. Journal of Applied Probability, 2019, 56 (1), 265-281. DOI: 10.1017/jpr.2019.17

[12]Attia N. On the multifractal analysis of the branching random walk in . Journal of Theoretical Probability, 2014, 27(4), 1329-1349. DOI: 10.1007/s10959-013-0488-x

[13]Attia N. On the multifractal analysis of branching random walk on galton–watson tree with random metric. Journal of Theoretical Probability, 2021, 34(1), 90-102. DOI: 10.1007/s10959-019-00984-z

[14]Achour R, Li Z, Selmi B, Wang T. General fractal dimensions of graphs of products and sums of continuous functions and their decompositions. Journal of Mathematical Analysis and Applications, 2024, 538(2), 128400. DOI: 10.1016/j.jmaa.2024.128400

[15]Cheng D, Li Z, Selmi B. On the general fractal dimensions of hyperspace of compact sets. Fuzzy Sets and Systems, 2024, 488, 108998. DOI: 10.1016/j.fss.2024.108998

[16]Attia N, Selmi B. A multifractal formalism for Hewitt-Stromberg measures. The Journal of Geometric Analysis, 2021, 31(1), 825-862. DOI: 10.1007/s12220-019-00302-3

[17]Douzi Z., Selmi B. On the mutual singularity of Hewitt-Stromberg measures for which the multifractal functions do not necessarily coincide. The European Physical Journal Special Topics, 2021, 230(21), 3815-3834. DOI: 10.1007/s11587-021-00572-6

[18]Douzi Z, Selmi B, Ben Mabrouk A. The refined multifractal formalism of some homogeneous Moran measures. The European Physical Journal Special Topics, 2021, 230, 3815-3834. DOI: 10.1140/epjs/s11734-021-00318-3.

[19]Douzi Z, Selmi B. On the mutual singularity of multifractal measures. Electronic Research Archive, 2020, 28(1), 423-432. DOI: 10.3934/era.2020024

[20]Douzi Z, Samti A, Selmi B. Another example of the mutual singularity of multifractal measures. Proyecciones, 2021, 40(1), 17-33. DOI: 10.22199/issn.0717-6279-2021-01-0002

[21]Selmi B. The mutual singularity of multifractal measures for some non-regularity Moran fractals. Bulletin of the Polish Academy Sciences Mathematics, 2021, 69, 21-35. DOI: 10.4064/ba210216-9-10

[22]de Amo E, Díaz Carrillo M, Fernàndez-Sànchez J. On duality of aggregation operators and k-negations. Fuzzy Sets and Systems, 2011, 181(1), 14-27. DOI: 10.1016/j.fss.2011.05.021

[23]Serbenyuk S. Systems of functional equations and generalizations of certain functions. Aequationes mathematicae, 2021, 95(5): 801-820. DOI: 10.1007/s00010-021-00840-8

[24]Sumi H. Rational semigroups, random complex dynamics and singular functions on the complex plane. American Mathematical Society Translations: Series 2, 2010, 230: 161-200. DOI: 10.1090/trans2/230/08

[25]Fernàndez Sànchez J, Viader P, Paradís J, Díaz Carrillo M. A singular function with a non-zero finite derivative. Nonlinear Analysis: Theory, Methods & Applications, 2012, 75(13), 5010-5014. DOI: 10.1016/j.na.2012.04.015

[26]Sánchez JF, Viader P, Paradís J, Carrillo MD. A singular function with a non-zero finite derivative on a dense set. Nonlinear Analysis: Theory, Methods & Applications, 2014, 95, 703-713. DOI: 10.1016/j.na.2013.10.001

[27]Sánchez JF, Viader P, Paradís J, Carrillo MD. A singular function with a non-zero finite derivative on a dense set with Hausdorff dimension one. Journal of Mathematical Analysis and Applications, 2016, 434(1), 713-728. DOI: 10.1016/j.jmaa.2015.09.036

[28]Serbenyuk S. 2024. Singular modifications of a classical function. Acta Mathematica Hungarica, 2024, 172(1), 206-222. DOI: 10.1007/s10474-024-01406-1

[29]Cantor G. De la puissance des ensembles parfaits de points: Extrait d’une lettre adressée à l’éditeur. Acta Mathematica, 1884, 4(1), 381-392. DOI: 10.1007/BF02418423

[30]Cantor function. Wikipedia. https://en.wikipedia.org/wiki/Cantor_function (accessed on 01 June 2025).

[31]Lebesgue H. Leçons sur I’intégration et la recherche des fonctions primitives. Gauthier-Villars et cie, 1928.

[32]Minkowski H. Zur Geometrie der Zahlen. Verhandlungen des III. internationalen mathematiker-kongresses. Heidelberg, Berlin, 1904, 171-172.

[33]Dovgoshey O, Martio O, Ryazanov V, Vuorinen M. The Сantor function. Expositiones Mathematicae, 2006, 24 (1), 1-37. DOI: 10.1016/j.exmath.2005.05.002

[34]Denjoy A. Sur une fonction réelle de Minkowski. Journal de Mathématiques Pures et Appliquées, 1938, 17(1-4), 105-151.

[35]Doting JS. Minkowski’s Question Mark Function. University of Groningem, 2022, 34.

[36]Conley R.M. A Survey of the Minkowski ?(x) Function. West Virginia University, 2003, 37.

[37]van Kampen ER, Wintner A. On a singular monotone function. Journal of the London Mathematical Society, 1937, 1(4), 243-244. DOI: 10.1112/jlms/s1-12.48.243

[38]Salem R. On singular monotonic functions of the Cantor type. Journal of Mathematics and Physics, 1942, 21(1-4), 69-82. DOI: 10.1002/sapm194221169

[39]Salem R. On some singular monotonic functions which are strictly increasing. Transactions of the American Mathematical Society, 1943, 53(3), 427-439. DOI: 10.1090/s0002-9947-1943-0007929-6

[40]Serbenyuk S. One distribution function on the Moran sets. Azerbaijan Journal of Mathematics, 2020, 10(2), 12-30. Arxiv:1808.00395, Arxiv Preprint 2018. DOI: https://doi.org/10.48550/arXiv.1808.00395

[41]Serbenyuk S. Certain singular distributions and fractals. Tatra Mountains Mathematical Publications, 2021, 79(2), 163-198. DOI: 10.2478/tmmp-2021-0026

[42]Serbenyuk S. Some fractal properties of sets having the Moran structure. Tatra Mountains Mathematical Publications, 2022, 81(1), 1-38. DOI: 10.2478/tmmp-2022-0001

[43]Serbenyuk S. Relationships between singular expansions of real numbers. The Journal of Analysis, 2024, 32(6), 3655-3675. DOI: 10.1007/s41478-024-00825-1

[44]Kober H. On Singular Functions of Bounded Variation. Journal of the London Mathematical Society, 1948, 1(3), 222-229. DOI: 10.1112/jlms/s1-23.3.222

[45]Harris TE. On chains of infinite order. Pacific Journal of Mathematics, 1955, 5, 707-724.

[46]Kinney JR. Singular functions associated with Markov chains. Proceedings of the American Mathematical Society, 1958, 9(4), 603-608. DOI: 10.2307/2033216

[47]Takács L. An increasing continuous singular function. The American Mathematical Monthly, 1978, 85(1), 35-37, DOI: 10.1080/00029890.1978.11994504

[48]Freilich G. Increasing continuous singular functions. The American Mathematical Monthly,1973, 80(8), 918-919. DOI: 10.1080/00029890.1973.11993406

[49]Piranian G. Two monotonic, singular, uniformly almost smooth functions. Duke Mathematical Journal, 1966, 33(2), 255-262. DOI: 10.1215/S0012-7094-66-03329-1

[50]Girgensohn R. Constructing singular functions via Farey fractions. Journal of mathematical analysis and applications, 1996, 203 (1), 127-141. DOI: 10.1006/jmaa.1996.0370

[51]Tichy RF, Uitz J. An extension of Minkowski's singular function. Applied Mathematics Letters, 1995, 8(5), 39-46. DOI:10.1016/0893-9659(95)00064-w

[52]Attia N. Advances on fractal measures of Cartesian product sets in Euclidean space. AIMS Mathematics, 2025, 10(3), 5971-6001. DOI: 10.3934/math.2025273

[53]Attia N, Khalifa MBH. Note on the multifractal formalism of covering number on the Galton-Watson tree. Kragujevac Journal of Mathematics, 2025, 49(1), 43-60. DOI: 10.46793/KgJMat2501.043A

[54]Attia N, Mahjoub A. On the relative vectorial multifractal analysis of fractal measures. International Symposium on Mathematical Analysis of Fractals and Dynamical Systems. Cham: Springer Nature Switzerland, 2023: 105-116. DOI: 10.1007/978-3-031-58641-5_7

[55]Attia N., Jebali H. On the box dimension of recurrent fractal interpolation functions defined with Matkowski contractions. The Journal of Analysis, 2024, 32(6), 3453-3474. DOI: 10.1007/s41478-024-00816-2

[56]Attia N, Amami R. On linear transformation of generalized affine fractal interpolation function. AIMS Mathematics, 2024, 9(7), 16848-16862. DOI: 10.3934/math.2024817

[57]Attia N, Jebali H, Guedri R. On a class of Hausdorff measure of cartesian product sets in metric spaces. Topological Methods in Nonlinear Analysis, 2023, 62(2) 601-623. DOI: 10.12775/TMNA.2023.016

[58]Attia N., Guedri R. A note on the regularities of Hewitt-Stromberg h-measures. Annali dell' Università di Ferrara, 2023, 69(1), 121-137. DOI: 10.1007/s11565-022-00405-w

[59]Attia N, Jebali H. On the construction of recurrent fractal interpolation functions using Geraghty contractions. Electronic Research Archive, 2023, 31(11): 6866-6880. DOI: 10.3934/era.2023347

[60]Attia N, Guizani O, Mahjoub A. Some relations between Hewitt-Stromberg premeasure and Hewitt-Stromberg measure. Filomat, 2023, 37(1), 13-20. DOI: 10.2298/FIL2301013A

[61]Attia N, Balegh M, Amami R, Amami R. On the Fractal interpolation functions associated with Matkowski contractions. Electronic Research Archive, 2023, 31(8), 4652-4668. DOI: 10.3934/era.2023238

[62]Attia N, Selmi B. Subsets of positive and finite multifractal measures. Fractals, 2024, 32(2), 2440004. DOI: 10.1142/S0218348X24400048

[63]Li Z, Selmi B, Zyoudi H. A comprehensive approach to multifractal analysis. Expositiones Mathematicae, 2025, 43(5), 125690, DOI: 10.1016/j.exmath.2025.125690

[64]Achour R, Doria S, Selmi B, Li Z. Generalized fractal dimensions and gauges for self-similar sets and their application in the assessment of coherent conditional previsions and in the calculation of the Sugeno integral. Chaos, Solitons & Fractals, 2025, 196, 116374. DOI: 10.1016/j.chaos.2025.116374

[65]Selmi B., Zyoudi H. Regarding the set-theoretic complexity of the general fractal dimensions and measures maps. Analysis, 2025, 45(1), 85-103. DOI: 10.1515/anly-2024-0087

[66]Sebe GI, Lascu D, Selmi B. The hausdorff dimension of the sets of irrationals with prescribed relative growth rates. The Journal of Geometric Analysis, 2025, 35(1), 33. DOI: 10.1007/s12220-024-01866-5

[67]Achour R, Selmi B. General fractal dimensions of typical sets and measures. Fuzzy Sets and Systems, 2024, 490, 109039. DOI: 10.1016/j.fss.2024.109039

[68]Liu Y, Selmi B, Li Z. On the mean fractal dimensions of the Cartesian product sets. Chaos, Solitons & Fractals, 2024, 180, 114503. DOI: 10.1016/j.chaos.2024.114503

[69]Selmi B, Yuan Z. On the multifractal measures: proportionality and dimensions of Moran sets. Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72(8), 3949-3969. DOI: 10.1007/s12215-023-00873-9

[70]Attia N, Selmi B. On the multifractal measures and dimensions of image measures on a class of Moran sets. Chaos, Solitons & Fractals, 2023, 174, 113818. DOI: 10.1016/j.chaos.2023.113818

[71]Attia N, Selmi B. On the fractal measures and dimensions of image measures on a class of Moran sets. Mathematics. 2023, 11(6), 1519. DOI: 10.3390/math11061519

[72]Selmi B. On the projections of the multifractal Hewitt-Stromberg dimensions. Filomat, 2023, 37(15), 4869-4880. DOI: 10.2298/FIL2315869S

[73]Selmi B. A Review on multifractal analysis of hewitt-stromberg measures. The Journal of Geometric Analysis, 2022, 32(1), 12. DOI: 10.1007/s12220-021-00753-7

[74]Mabrouk AB, Selmi B. On the equivalence of multifractal measures on moran sets. Filomat, 2022, 36(10), 3479-3490. DOI: 10.2298/FIL2210479B

[75]Douzi Z, Selmi B. Projections of mutual multifractal functions. Journal of Classical Analysis, 2022, 19(1), 21-37. DOI: 10.7153/jca-2022-19-03

[76]Selmi B. Multifractal dimensions for projections of measures. arxiv preprint arxiv:1806.04636, 2018. Boletim da Sociedade Paranaense de Matemática, 2022, 40, 1-15. DOI: 10.5269/bspm.44913

[77]Selmi B, Zyoudi H. The smoothness of multifractal Hewitt-Stromberg and box dimensions. Journal of Nonlinear Functional Analysis, 2024 (2024), 11, 1-21 . DOI: 10.23952/jnfa.2024.11

[78]Selmi B. Projection estimates for the lower Hewitt-Stromberg dimension. Real Analysis Exchange, 2024, 49(1), 67-86. DOI: 10.14321/realanalexch.49.1.1664964942

[79]Khan I, Shaheryar M, Din FU, Ishtiaq U, Popa IL. Fixed-point results in fuzzy S-metric space with applications to fractals and satellite web coupling problem. Fractal and Fractional, 2025, 9(3), 164. DOI: 10.3390/fractalfract9030164

[80]Khan I, Din FU, Cotîrlă LI, Breaz D. Modeling fractals in the setting of graphical fuzzy cone metric spaces. Fractal and Fractional, 2025, 9(7), 457. DOI: 10.3390/fractalfract9070457

Downloads

Published

2025-11-28

Issue

Section

Articles