Generalized Reduced Gröbner Basis and Initial Ideal of Binomial Edge Ideal of Different Classes of Graphs

Authors

  • Ali Raza Shafiq Department of Mathematics, University of Management and Technology, Lahore, Pakistan Author
  • Sidra Bashir Department of Mathematics, Riphah International University, Islamabad, Pakistan Author
  • Ilyas Khan Abdus Salam School of Mathematical Sciences, Government College University, Lahore, Pakistan Author

DOI:

https://doi.org/10.64229/74hx1f27

Keywords:

Monomial, Gröbner basis, Binomial edge ideal

Abstract

In this paper, we study the binomial edge ideals associated with three specific classes of graphs: the comb graph, the cross-ladder graph, and the -sunlet graph. These graph structures offer a rich interplay between combinatorics and algebra, particularly in the context of Gröbner basis theory. For each graph, we explicitly compute the reduced Gröbner basis of the corresponding binomial edge ideal with respect to a lexicographic monomial order. Our computations involve a detailed analysis of admissible paths in the graphs, which play a central role in characterizing the generators of the Gröbner basis. Furthermore, we determine the initial ideals associated with each class and describe the families of monomials that arise in their minimal generating sets. The construction of these Gröbner bases not only offers insight into the structural properties of the respective graphs but also enables potential applications in algebraic statistics, computational algebra, and ideal theory. By classifying the admissible paths and systematically generating the Gröbner basis elements, our work provides a constructive and combinatorially motivated framework for understanding binomial edge ideals. These results contribute to the growing body of literature exploring the connections between graph-theoretic structures and algebraic invariants, and they open avenues for further investigations in more generalized or complex graph families.

References

[1]Huneke C. Mathematical biography of melvin hochster. Michigan Mathematical Journal, 2008, 57, V-IX.

[2]Herzog J, Hibi T. Monomial ideals. InMonomial ideals, London: Springer London.2011, pp. 3-22. DOI: 10.1007/978-0-85729-106-6_1

[3]Villarreal RH. Cohen-macaulay graphs. Manuscripta Mathematica,1990, 66(3), 277-293. DOI: 10.1007/BF02568497.

[4]Herzog J, Hibi T, Hreinsdóttir F, Kahle T, Rauh J. Binomial edge ideals and conditional independence statements. Advances in Applied Mathematics,2010, 45(3), 317-333. DOI: 10.1016/j.aam.2010.01.003

[5]Ohtani M. Graphs and ideals generated by some 2-minors. Communications in Algebra,2011, 39(3), 905-917. DOI: 10.1080/00927870903527584

[6]Crupi M, Rinaldo G. Binomial edge ideals with quadratic Gröbner bases. TheElectronic Journal of Combinatorics,2011, 18(1), 211. DOI: 10.37236/698

[7]Badiane M, Burke I, Sköldberg E. The universal Gröbner basis of a binomial edge ideal. The Electronic Journal of Combinatorics,2017, 24(4), 11.DOI: 10.37236/5912

[8]Zafar S, Zahid Z. Initial ideal of binomial edge ideal in degree 2. Novi Sad Journal of Mathematics,2015, 45(2), 187-199. DOI: 10.30755/NSJOM.2014.064

[9]Bruns W, Vetter U. Determinantal rings. Springer-Verlag, 2006, 1327.DOI: 10.1007/BFb0080378

[10]Caniglia L, Guccione JA, Guccione JJ. Ideals of generic minors. Communications in Algebra,1990, 18(8), 2633-2640.DOI: 10.1080/00927879008824043

[11]Conca A. Ladder determinantal rings. Journal of Pure and Applied Algebra, 1995, 98, 119-134. DOI: 10.1016/0022-4049(94)00039-L

[12]Faroß N, Schwarz S. Gröbner bases for Boolean function minimization. Mathematics in Computer Science, 2025, 19(1), 1-8. DOI:10.1007/s11786-025-00602-8

[13]Lucchini A, Nemmi D. On the connectivity of the generating and rank graphs of finite groups. Journal of Algebra, 2025, 665, 131-144. DOI: 10.1016/j.jalgebra.2024.10.030

[14]Kiani D, Saeedi Madani S. Some Cohen–Macaulay and unmixed binomial edge ideals. Communications in Algebra,2015, 43, 5434-5453. DOI: 10.1080/00927872.2014.952734

[15]Schenzel P, Zafar S. Algebraic properties of the binomial edge ideal of a complete bipartite graph. Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica,2014, 22(2), 217- 237. DOI: 10.2478/auom-2014-0043

[16]Zafar S. On approximately Cohen-Macaulay binomial edge ideal. Bulletin mathématique de la Société des Sciences Mathématiques de Roumanie, 2012, 55(103)(4), 429-442.

[17]Rauh J. Generalized binomial edge ideals. Advances in Applied Mathematics,2013, 50 (3), 409-414. DOI: 10.1016/j.aam.2012.08.009

[18]Sturmfels B. Gröbner bases and Stanley decompositions of determinantal rings. Mathematische Zeitschrift, 1990, 205(1), 137-144.DOI: 10.1007/BF02571229

[19]Shen YH, Zhu G. Powers of generalized binomial edge ideals of path graphs. International Journal of Algebra and Computation, 2024, 34(05), 779-806. DOI: 10.1142/S0218196724500292

[20]Anuvinda J, Mehta R, Saha K. On the depth of generalized binomial edge ideals. Mediterranean Journal of Mathematics, 2024, (5), 147. DOI: 10.1007/s00009-024-02685-2

[21]Anuvinda J, Mehta R, Saha K. On a regularity-conjecture of generalized binomial edge ideals. Collectanea Mathematica, 2024, 76, 685-693. DOI: 10.1007/s13348-024-00452-w

[22]Lax E, Rinaldo G, Romeo F. Sequentially Cohen-Macaulay binomial edge ideals. arXiv preprint, 2024.DOI:10.48550/arXiv.2405.08671

[23]Karmakar R, Sarkar R, Subramaniam A. Algebraic properties of binomial edge ideals of Levi graphs associated with curve arrangements. Journal of Pure and Applied Algebra,2024, 228(9),107665. DOI: 10.1016/j.jpaa.2024.107665

[24]Jayanthan AV, Sivakumar A, Van Tuyl A. Partial Betti splittings with applications to binomial edge ideals. arXiv preprint, 2024. DOI: 10.48550/arXiv.2412.04195

[25]Wang H, Tang Z. Regularity of powers of binomial edge ideals of complete multipartite graphs. Czechoslovak Mathematical Journal, 2023, 73(3), 793-810. DOI: 10.21136/CMJ.2023.0246-22

[26]Stelzer A. Matrix Schubert varieties, binomial ideals, and reduced Gröbner bases. Proceedings of the American Mathematical Society, 2025, 153(07), 2745-58. DOI: 10.1090/proc/17175

[27]Bhardwaj OP, Saha K. Regularity of two classes of Cohen-Macaulay binomial edge ideals. arXiv preprint, 2024. DOI: 10.48550/arXiv.2409.01639

[28]Kumar A. Rees algebra and special fiber ring of binomial edge ideals of closed graphs. Illinois Journal of Mathematics, 2022, 66(1), 79-90. DOI: 10.1215/00192082-9702270

[29]Lang S. Algebra. In Springer Science & Business Media, 3rd ed.; Springer: New York, NY, USA, 2012. DOI: 10.1007/978-1-4613-0041-0

[30]Cox D, Little J, O’Shea D. Ideals, Varieties, and Algorithms, 4th ed.; Springer: Cham, Switzerland, 2015. DOI: 10.1007/978-3-319-16721-3

[31]Eisenbud D. Commutative algebra with a view toward algebraic geometry; Springer: New York, NY, USA, 1995. DOI: 10.1007/978-1-4612-5350-1

Downloads

Published

2026-01-05

Issue

Section

Articles

How to Cite

Shafiq, A. R., Bashir, S., & Khan, I. (2026). Generalized Reduced Gröbner Basis and Initial Ideal of Binomial Edge Ideal of Different Classes of Graphs. Global Integrated Mathematics, 2(1), 1-14. https://doi.org/10.64229/74hx1f27